

Ophthalmology

Department of Ophthalmology website: http://www.eyes.arizona.edu

Medical student teaching program: http://www.eyes.arizona.edu/medstudents.htm

Fundamentals of ophthalmoscopy: http://www.eyes.arizona.edu/FundOph.htm

Ophthalmology

Elective offerings for medical students:

Ophth 815A: Intradepartmental clinical elective. 2-4 weeks available for 4th year or part of 3rd year surgical elective

Ophth 815B: Similar to 815A but in private offices of affiliated faculty, limited to 4th year students only

Ophth 815P: Phoenix clinical elective 2-4 weeks, 4th year only

Ophth 800: Elective research rotation within Department, time and project variable, 4th year only

Ophth 891A: Extended research opportunities for 4th year students interested in ophthalmology as a career

OPHTHALMOLOGICAL CONTRIBUTIONS to MEDICAL SCIENCE

1950's First tissue homograft (cornea) to achieve high success rate in clinical practice

- 1960's First demonstration of lyonization in humans (in X-linked ocular disorders such as ocular albinism and chorioderemia)
- 1971 "Two-hit hypothesis" of tumor causation developed by Knutson using the ocular model of retinoblastoma

1970's Abnormal crossing of visual fibers demonstrated in human albinos

1986 The first recessive human oncogene located, cloned and sequenced in an ocular tumor (retinoblastoma)

What is ophthalmology?

Webster's Unabridged:

The branch of medical science dealing with the anatomy, functions, and diseases of the eye

Herman von Helmholtz:

Ophthalmology is for medicine what astronomy is for physics: the Model

Why study ophthalmology?

"THE EYE IS A WINDOW TO SYSTEMIC DISEASE"

WHAT DO I NEED TO KNOW?

Anatomy and physiology of vision How to elicit a valid ocular history How to perform an eye examination Learn about common eye diseases and their treatment Understand the presentation and significance of the more important ocular diseases

Anatomy of human vision

The eyeball and it's connections

Anatomy of human vision

Associated structures

Anatomy of human vision

The retina

Physiology of human vision

How does the eye work?

Physiology of human vision

We see best in bright light!

Correlation of acuity and retinal histology

The ophthalmic history

- A. Chief complaint
- **B.** Onset, duration, and severity of symptoms
- C. Associated ocular symptoms such as changes in vision, photophobia, photopsia, pain, redness, discharge, diplopia
- D. Systemic symptoms, disease, drugs, etc.
- E. Prior ocular surgery and/or treatment

The ocular examination

- A. Measuring visual function (acuity)
- B. External, direct examination (use focused light)
 - 1. Alignment and motility
 - 2. Lid and pupillary functions
 - 3. Degree, type, and location of conjunctival injection
- **C.** Internal examination
 - 1. Note clarity of media
 - 2. Disc color and morphology
 - 3. Macular pigmentation and lesions
 - 4. Appearance of retinal vessels
 - 5. General appearance of retina and RPE

How do we measure vision?

Snellen eye chart

How do we measure vision?

500

Tumbling E

Allen pictures

Fig. 6-1. Normal isopters of young adults measured with Goldmann perimeter.

Goldmann perimetry

"An island of vision in a sea of darkness"

Humphrey automated perimeter

Anatomic relationship of retinal axons at chiasm

Bitemporal hemianopia

Left homonymous hemianopia

Subconjunctival hemorrhage

Conjunctival injection

Subconjunctival hemorrhage

Conjunctival injection

Conjunctival disease

Pingueculum

Pterygium

Pterygiae

Metallic foreign body

Organic foreign body

Corneal foreign bodies

Lid foreign bodies

Ophthalmology

Cataracts

Eyelid anatomy

Staph folliculitis/blepharitis

Blepharitis

Subacute

Acute blepharitis with internal hordeolum

Chalazia

Normal tarsal conjunctiva

Cobblestone changes

Hyphemas

Hypopyon

Corneal abrasions

ABRASIONS

Fingernails

Dust storm

Cigarette burn

Curling iron

Automobile air bag abrasions

Herpes simplex I keratitis

Herpes zoster

Keratitis secondary to extended wear soft contact lenses

Extensive corneal edema is your clue to a perforating injury

Is it perforated or not?

Penetrating corneal trauma with infection

Measuring vision in children

Check fixation preference in pre-verbal children

Ductions

Versions

Esotropia (ET)

Orbital floor fracture with trapped IR

Amblyopia or "lazy eye"

Definition: Poor vision in the absence of organic disease

von Graefe: "the doctor saw nothing and the patient very little"

Amblyopia or "lazy eye"

Etiology:

- A. Strabismus (diplopia)
- B. Cloudy media (lack of formed images on retina)
- **C.** Refractive errors (blurred vision)

Amblyopia or "lazy eye"

Treatment: Amblyopia can only develop during the first 8 years of life, and can only be treated during this time!

- **1. Restore clear media and/or correct refractive error**
- 2. Patch the better seeing eye and force brain to accept clear images from amblyopic eye

Ophthalmology

UNTIL NEXT TIME

What is it?

A disease of progressive optic neuropathy with loss of retinal neurons and the nerve fiber layer, resulting in blindness if left untreated.

What causes it?

There is a dose-response relationship between intraocular pressure and the risk of damage to the visual field.

ADVANCED GLAUCOMA INTERVENTION STUDY

Intraocular pressure is not the only factor responsible for glaucoma!

- 95% of people with elevated IOP will never have the damage associated with glaucoma.
- One-third of patients with glaucoma do not have elevated IOP.
- Most of the ocular findings that occur in people with glaucoma also occur in people without glaucoma.

Population distribution of intraocular pressure

Some characteristics of IOP

Normal vs glaucoma

Effects of age and sex

Angle Anatomy

Anatomy of anterior chamber angle

How do we measure IOP?

Applanation

Schiotz

Ocular hypertension treatment study (OHTS study)

*GOALS: To evaluate the effectiveness of topical ocular hypotensive medications in preventing or delaying visual field loss and/or optic nerve damage in subjects with ocular hypertension at moderate risk for developing open-angle glaucoma (POAG).

POPULATION: 1636 participants aged 40-80 years with IOP 24-32 mm HG in one eye, and 21-32 in the other, randomly assigned to observation and treatment groups.

OHTS Conclusions

At 60 months, the probability of developing glaucoma was:

9.5% in observation group

4.4% in treatment group

Cumulative Probability of Developing POAG² 15% Medication Observation Patients Who Developed POAG (%) P<.0001 10%-60% Risk Reduction 5%-0% 12 18 24 30 36 42 48 54 60 66 72 78 84 Follow-up (mo)

OHTS parameters that influence the risk of developing POAG

Optic nerve signs of glaucoma progression

- Increasing C:D ratio
- Development of disk pallor
- Disc hemorrhage (60% will show progression of visual field damage)
- **& Vessel displacement**
- Increased visibility of lamina cribosa

Cup-to-disk ratio

The histology of glaucomatous optic nerve cupping:

Normal:

Glaucomatous:

DISK CUPPINGNormalGlaucoma

Glaucomatous cupping

Types of glaucoma

I. Primary: A. Congenital B. Juvenile (hereditary) C. Adult

1. Narrow angle

- 2. Open angle
- **II. Secondary**
 - A. Inflammatory
 - **B.** Traumatic
 - **C.** Rubeotic
 - **D. Phacolytic**
 - etc.

Congenital Glaucoma

Onset: antenatally to 2 years old

Symptoms Irritability Photophobia Epiphora Poor vision Signs Elevated IOP Buphthalmos Haab's striae Corneal clouding Glaucomatous cupping Field loss

Congenital Glaucoma

Buphthalmos, glaucomatous cupping, and cloudy cornea OD

Normal OS

Haab's striae

Buphthalmos and cloudy corneas

Narrow Angle Glaucoma

Onset: 50+ years of age

Symptoms Severe eye/headache pain **Blurred** vision **Red eye** Nausea and vomiting Halos around lights **Intermittent eye ache** at night

Signs Red, teary eye **Corneal edema Closed** angle **Shallow AC** Mid-dilated, fixed pupil "Glaucomflecken" Iris atrophy **AC** inflammation

Anatomy of Angle Closure Glaucoma

Narrow Angle Glaucoma

Treatment: Peripheral iridotomy

Narrow Angle Glaucoma

Acute angle-closure attack!

Red eye, cloudy cornea, and mid-dilated non-reactive pupil

Open Angle Glaucoma

Aka: chronic simple glaucoma (CSG) and primary open angle glaucoma (POAG) Onset: 50+ years of age

Symptoms

Usually none May have loss of central and peripheral vision late Signs Elevated IOP Visual field loss Glaucomatous disk changes

Treatment

Medical

 Miotics
 Beta-blockers
 Carbonic anhydrase inhibitors
 Prostaglandin analogues
 Alpha-2 agonists

Surgical

- Argon laser trabeculoplasty
 - * Trabeculectomy
 - * Filtering procedure
 - * Cyclocryotherapy

 - Iridotomy

The posterior segment

Structures:

- I. Optic nerveII. VitreousIII. Retina and
 - vasculature
- IV. Macula
- V. Choroid and vasculature
- VI. Lens
- VII. Ciliary body and zonuleVIII.Pars plana & plicata

The posterior segment

Evaluation techniques:

- I. Direct ophthalmoscopy
- II. Indirect ophthalmoscopy
- **III. Slit lamp and lenses**
- IV. Ultrasound (A & B)
- V. Electroretinogram (ERG)
- **WI. Electrooculogram (EOG)**
- VII. Magnetic resonance imaging
- VIII. Fluorescein angiogram
- IX. Visual fields

The lens

Morphology

Cataracts

Cataract

Advanced cataract

Phacolytic glaucoma

Cataract

Surgery

Ophthalmology

Ophthalmoscopy

Monocular examination:

WA conventional head

WA Panoptic head

Retinal examination

To dilate or not to dilate:

Ophthalmoscopy

Binocular examination:

Slit lamp

Indirect ophthalmoscopy

Ophthalmoscopy

The future?

Direct Ophthalmoscope Slit Lamp 90 diopter lens

The ocular fundus

The ocular fundus

Normal

The ocular fundus

Where is the macula?

Normal

"Normal variants"

Myelinated nerve fibers

"Choked disc"

or

Papilledema

Dx?

Papilledema with papillary hemorrhages

Dx?

Disc neovascularization
The optic nerve

Optic atrophy

Arterial occlusions

Arterial plaques

Venous occlusions

Detachments

Retinal detachment repair

Before

Hypertensive retinopathy

Papilledema, papillary hemorrhages, "cotton wool" spots, and narrowed aterioles

Early background diabetic retinopathy

"Blot and dot hemorrhages" Hard and soft exudates

Circinate exudates

PREVALENCE OF DIABETIC RETINOPATHY Subjects with Type II Diabetes

From R Klein, et al., Arch. Ophthalmol. 102:527-532, 1984

PREVALENCE OF DIABETIC RETINOPATHY Subjects with Type I Diabetes

From R Klein, et al., Arch. Ophthalmol. 102:520-526, 1984

DIABETIC RETINOPATHY: Histopathology

- Pericyte loss (physiological role unknown; may stimulate endothelial proliferation, lead to reduced blood flow)
- Basement membrane thickening
- Capillary acellularity (leads to ischemia)
- **Endothelial proliferation: microaneurysms**
- **Neovascularization**
- Macular edema

Moderate Visual Loss Clinically Significant Macular Edema - Center Involved Less Severe Retinopathy

Advanced background diabetic retinopathy

Neovascularization

Neovascular retinopathy

Panretinal photocoagulation

Later changes

Advanced stages

Age-related macular degeneration (ARMD)

Hemorrhagic phase

Age-related macular degeneration (ARMD)

Atrophic ARMD

Drusen

Age-related macular degeneration (ARMD)

End-stage gliosis

Laser treatment

Retinopathy of prematurity (ROP)

Maturity of retinal vasculature and risk of retinopathy of Prematurity (ROP)

Retinopathy of prematurity (ROP)

Peripheral new vessel growth

Retinopathy of prematurity (ROP)

Temporal scarring with dragged macula

THANK YOU ALL FOR LISTENING!

